trends

Frozen no more, a case study of Arctic permafrost impacts of oil and gas withdrawal

  • Szabo, D. J. & Meyers, K. O. Prudhoe Bay: Development History and Future Potential. in (OnePetro, 1993). https://doi.org/10.2118/26053-MS.

  • Arctic National Wildlife Refuge, 1002 Area, Petroleum Assessment, 1998, Including Economic Analysis. https://pubs.usgs.gov/fs/fs-0028-01/fs-0028-01.htm.

  • Fountain, H. Here’s what oil drilling looks like in the Arctic Refuge, 30 Years Later. The New York Times (2017).

  • Mystery surrounds only oil well drilled in ANWR – Anchorage Daily News.

  • Jorgenson, M. T. & Jorgenson, J. C. Arctic Connections to Global Warming and Health. in Climate Change and Global Public Health (eds. Pinkerton, K. E. & Rom, W. N.) 91–110 (Springer International Publishing, Cham, 2021). https://doi.org/10.1007/978-3-030-54746-2_5.

  • Walker, D. A. et al. Cumulative impacts of a gravel road and climate change in an ice-wedge-polygon landscape, Prudhoe Bay, Alaska. Arct. Sci. 8, 1040–1066 (2022).


    Google Scholar
     

  • Walker, D. A., Cate, D., Brown, J. & Racine, C. Disturbance and Recovery of Arctic Alaskan Tundra Terrain (1987).

  • Resource Development Council for Alaska, Inc. Alaska’s Oil and Gas Industry. https://www.akrdc.org/oil-and-gas.

  • Johnson, H. E., Golden, T. S., Adams, L. G., Gustine, D. D. & Lenart, E. A. Caribou use of habitat near energy development in Arctic Alaska. J. Wildl. Manag. 84, 401–412 (2020).

    Article 

    Google Scholar
     

  • Raynolds, M. K. et al. Landscape impacts of 3D-seismic surveys in the Arctic National Wildlife Refuge, Alaska. Ecol. Appl. 30, 1–20 (2020).

    Article 

    Google Scholar
     

  • Abolt, C. J., Young, M. H., Atchley, A. L., Harp, D. R. & Coon, E. T. Feedbacks between surface deformation and permafrost degradation in ice wedge polygons, Arctic Coastal Plain, Alaska. J. Geophys. Res. Earth Surf. 125, e2019JF005349 (2020).

  • Walker, D. A. et al. Cumulative impacts of oil fields on northern Alaskan Landscapes. Science 238, 757–761 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Council, N. R. Cumulative environmental effects of oil and gas activities on Alaska’s North Slope. Cumul. Environ. Eff. Oil Gas Activ. Alaska’s North Slope (2003).

    Article 

    Google Scholar
     

  • Jones, N. Canada’s oil sands spew massive amounts of unmonitored polluting gases. Nature (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miner, K. R. et al. Emergent biogeochemical risks from Arctic permafrost degradation. Nat. Climate Change 11, 809–819 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kirillina, K., Shvetsov, E. G., Protopopova, V. V., Thiesmeyer, L. & Yan, W. Consideration of anthropogenic factors in boreal forest fire regime changes during rapid socio-economic development: Case study of forestry districts with increasing burnt area in the Sakha Republic, Russia. Environ. Res. Lett. 15 (2020).

  • Aas, K. S. et al. Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model. Cryosphere 13, 591–609 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Webb, E. E. et al. Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nat. Climate Change (2022).

    Article 

    Google Scholar
     

  • Andresen, C. G. et al. Soil moisture and hydrology projections of the permafrost region-a model intercomparison. Cryosphere 14, 445–459 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Z. et al. Emerging role of wetland methane emissions in driving 21st century climate change. Proc. Natl. Acad. Sci. USA 114, 9647–9652 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anthony, K. W. et al. 21St-century modeled permafrost carbon emissions accelerated by abrupt Thaw Beneath Lakes. Nat. Commun. 9, 1–11 (2018).


    Google Scholar
     

  • Burke, S. A. et al. Long-term measurements of methane ebullition from thaw ponds. J. Geophys. Res. Biogeosci. 124, 2208–2221 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gross, M. Permafrost thaw releases problems. Curr. Biol. 29, R39–R41 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Karjalainen, O. et al. Data descriptor: Circumpolar permafrost maps and geohazard indices for near-future infrastructure risk assessments. Sci. Data 6 (2019).

  • Melvin, A. M. et al. Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. Proc. Natl. Acad. Sci. USA 114, E122–E131 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jorgenson, M. T. & Joyce, M. R. Six strategies for rehabilitating land disturbed by oil development in Arctic Alaska. Arctic 47, 374–390 (1994).

    Article 

    Google Scholar
     

  • Mobil, E. Oil Spill Response Field Manual. (2014).

  • Diversity, B. Arctic Ocean Drilling: Risking Oil Spills, Human Life, and Wildlife (2012).

  • de Gouw, J. A. et al. Daily satellite observations of methane from oil and gas production regions in the United States. Sci. Rep. 10, 1–10 (2020).


    Google Scholar
     

  • Bergstedt, H. et al. The spatial and temporal influence of infrastructure and road dust on seasonal snowmelt, vegetation productivity, and early season surface water cover in the Prudhoe Bay Oilfield. Arct. Sci. 9, 243–259 (2023).

    Article 

    Google Scholar
     

  • Raynolds, M. K. et al. Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Glob. Change Biol. 20, 1211–1224 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Skorseth, K. & Selim, A. A. Gravel Roads: Maintenance and Design Manual.

  • Zheng, J., Berns-Herrboldt, E. C., Gu, B., Wullschleger, S. D. & Graham, D. E. Quantifying pH buffering capacity in acidic, organic-rich Arctic soils: Measurable proxies and implications for soil carbon degradation. Geoderma 424, 116003 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 1–11 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Green, R. O. et al. Airborne Visible/Infrared Imaging Spectrometer 3 (AVIRIS-3). in 1–10 (IEEE, 2022).

  • Euskirchen, E. S., Bret-Harte, M. S., Scott, G. J., Edgar, C. & Shaver, G. R. Seasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska. Ecosphere 3, art4 (2012).

    Article 

    Google Scholar
     

  • Gay, B. A. et al. Investigating permafrost carbon dynamics in Alaska with artificial intelligence. Environ. Res. Lett. 18, 125001 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. 2022(3), 55–67 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Jones, M. C. et al. Past permafrost dynamics can inform future permafrost carbon-climate feedbacks. Commun. Earth Environ.Bold”>4, 1–13 (2023).

    Article 

    Google Scholar
     

  • Liu, Z. et al. Widespread deepening of the active layer in northern permafrost regions from 2003 to 2020. Environ. Res. Lett. (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bring, A. et al. Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. J. Geophys. Res. G Biogeosci. 121, 621–649 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kurylyk, B. L., Hayashi, M., Quinton, W. L., McKenzie, J. M. & Voss, C. I. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow. Water Resour. Res. 52, 1286–1305 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Feng, J. et al. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome 8, 3 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heijmans, M. M. P. D. et al. Tundra vegetation change trajectories across permafrost environments and consequences for permafrost thaw. Nat. Rev. Earth Environ. 3 (2022).

  • BLM. Willow Master Development Plan Biological Assessment: Appendices (2022).

  • Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3 (2022).

  • Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: Insights from metagenomics. ISME J. 11, 2305–2318 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, J. B., Smith, M. O. & Johnson, P. E. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site. J. Geophys. Res. Solid Earth 91, 8098–8112 (1986).

    Article 

    Google Scholar
     

  • Gillespie, A. et al. Interpretation of residual images: Spectral mixture analysis of AVIRIS images, Owens Valley, California. In: Proceedings of Second Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop 243–270 (NASA, Pasadena, California, 1990).

  • Smith, M. O., Ustin, S. L., Adams, J. B. & Gillespie, A. R. Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sens. Environ. 31, 1–26 (1990).

  • Strahler, A. H., Woodcock, C. E. & Smith, J. A. On the nature of models in remote sensing. Remote Sens. Environ. 20, 121–139 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Small, C. The Landsat ETM+ spectral mixing space. Remote Sens. Environ. 93, 1–17 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Small, C. & Milesi, C. Multi-scale standardized spectral mixture models. Remote Sens. Environ. 136, 442–454 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Small, C. & Sousa, D. Spectral characteristics of the dynamic world land cover classification. Remote Sens. 15 (2023).

  • Small, C. & Sousa, D. The Sentinel 2 MSI spectral mixing space. Remote Sens. (2022).

  • Sousa, D. et al. The spectral mixture residual: A source of low-variance information to enhance the explainability and accuracy of surface biology and geology retrievals. J. Geophys. Res. Biogeosci. 127, e2021JG006672 (2022).

  • Sousa, D. & Small, C. Globally standardized MODIS spectral mixture models. Remote Sens. Lett. 10, 1018–1027 (2019).

    Article 

    Google Scholar
     

  • Sousa, D. & Small, C. Multisensor analysis of spectral dimensionality and soil diversity in the great Central Valley of California. Sensors 18, 583 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sousa, D. & Small, C. Global cross-calibration of Landsat spectral mixture models. Remote Sens. Environ. 192, 139–149 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Adams, J. B. & Gillespie, A. R. Remote Sensing of Landscapes with Spectral Images: A Physical Modeling Approach. (Cambridge University Press, 2006).

  • Davidson, S. J. et al. Mapping Arctic tundra vegetation communities using field spectroscopy and multispectral satellite data in North Alaska, USA. Remote Sens. 8, 978 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Liu, N., Budkewitsch, P. & Treitz, P. Examining spectral reflectance features related to Arctic percent vegetation cover: Implications for hyperspectral remote sensing of Arctic tundra. Remote Sens. Environ. 192, 58–72 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Nelson, P. R. et al. Remote sensing of tundra ecosystems using high spectral resolution reflectance: opportunities and challenges. J. Geophys. Res. Biogeosci. 127, e2021JG006697 (2022).

  • Thomson, E. R. et al. Multiscale mapping of plant functional groups and plant traits in the High Arctic using field spectroscopy, UAV imagery and Sentinel-2A data. Environ. Res. Lett. 16, 055006 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vehicle turnout length Guidance, State of Alaska.pdf

    • For more: Elrisala website and for social networking, you can follow us on Facebook

    Related Articles

    Leave a Reply

    Back to top button

    Discover more from Elrisala

    Subscribe now to keep reading and get access to the full archive.

    Continue reading