Szabo, D. J. & Meyers, K. O. Prudhoe Bay: Development History and Future Potential. in (OnePetro, 1993). https://doi.org/10.2118/26053-MS.
Arctic National Wildlife Refuge, 1002 Area, Petroleum Assessment, 1998, Including Economic Analysis. https://pubs.usgs.gov/fs/fs-0028-01/fs-0028-01.htm.
Fountain, H. Here’s what oil drilling looks like in the Arctic Refuge, 30 Years Later. The New York Times (2017).
Mystery surrounds only oil well drilled in ANWR – Anchorage Daily News.
Jorgenson, M. T. & Jorgenson, J. C. Arctic Connections to Global Warming and Health. in Climate Change and Global Public Health (eds. Pinkerton, K. E. & Rom, W. N.) 91–110 (Springer International Publishing, Cham, 2021). https://doi.org/10.1007/978-3-030-54746-2_5.
Walker, D. A. et al. Cumulative impacts of a gravel road and climate change in an ice-wedge-polygon landscape, Prudhoe Bay, Alaska. Arct. Sci. 8, 1040–1066 (2022).
Walker, D. A., Cate, D., Brown, J. & Racine, C. Disturbance and Recovery of Arctic Alaskan Tundra Terrain (1987).
Resource Development Council for Alaska, Inc. Alaska’s Oil and Gas Industry. https://www.akrdc.org/oil-and-gas.
Johnson, H. E., Golden, T. S., Adams, L. G., Gustine, D. D. & Lenart, E. A. Caribou use of habitat near energy development in Arctic Alaska. J. Wildl. Manag. 84, 401–412 (2020).
Raynolds, M. K. et al. Landscape impacts of 3D-seismic surveys in the Arctic National Wildlife Refuge, Alaska. Ecol. Appl. 30, 1–20 (2020).
Abolt, C. J., Young, M. H., Atchley, A. L., Harp, D. R. & Coon, E. T. Feedbacks between surface deformation and permafrost degradation in ice wedge polygons, Arctic Coastal Plain, Alaska. J. Geophys. Res. Earth Surf. 125, e2019JF005349 (2020).
Walker, D. A. et al. Cumulative impacts of oil fields on northern Alaskan Landscapes. Science 238, 757–761 (1987).
Council, N. R. Cumulative environmental effects of oil and gas activities on Alaska’s North Slope. Cumul. Environ. Eff. Oil Gas Activ. Alaska’s North Slope (2003).
Jones, N. Canada’s oil sands spew massive amounts of unmonitored polluting gases. Nature (2024).
Miner, K. R. et al. Emergent biogeochemical risks from Arctic permafrost degradation. Nat. Climate Change 11, 809–819 (2021).
Kirillina, K., Shvetsov, E. G., Protopopova, V. V., Thiesmeyer, L. & Yan, W. Consideration of anthropogenic factors in boreal forest fire regime changes during rapid socio-economic development: Case study of forestry districts with increasing burnt area in the Sakha Republic, Russia. Environ. Res. Lett. 15 (2020).
Aas, K. S. et al. Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model. Cryosphere 13, 591–609 (2019).
Webb, E. E. et al. Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nat. Climate Change (2022).
Andresen, C. G. et al. Soil moisture and hydrology projections of the permafrost region-a model intercomparison. Cryosphere 14, 445–459 (2020).
Zhang, Z. et al. Emerging role of wetland methane emissions in driving 21st century climate change. Proc. Natl. Acad. Sci. USA 114, 9647–9652 (2017).
Anthony, K. W. et al. 21St-century modeled permafrost carbon emissions accelerated by abrupt Thaw Beneath Lakes. Nat. Commun. 9, 1–11 (2018).
Burke, S. A. et al. Long-term measurements of methane ebullition from thaw ponds. J. Geophys. Res. Biogeosci. 124, 2208–2221 (2019).
Gross, M. Permafrost thaw releases problems. Curr. Biol. 29, R39–R41 (2019).
Karjalainen, O. et al. Data descriptor: Circumpolar permafrost maps and geohazard indices for near-future infrastructure risk assessments. Sci. Data 6 (2019).
Melvin, A. M. et al. Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. Proc. Natl. Acad. Sci. USA 114, E122–E131 (2017).
Jorgenson, M. T. & Joyce, M. R. Six strategies for rehabilitating land disturbed by oil development in Arctic Alaska. Arctic 47, 374–390 (1994).
Diversity, B. Arctic Ocean Drilling: Risking Oil Spills, Human Life, and Wildlife (2012).
de Gouw, J. A. et al. Daily satellite observations of methane from oil and gas production regions in the United States. Sci. Rep. 10, 1–10 (2020).
Bergstedt, H. et al. The spatial and temporal influence of infrastructure and road dust on seasonal snowmelt, vegetation productivity, and early season surface water cover in the Prudhoe Bay Oilfield. Arct. Sci. 9, 243–259 (2023).
Raynolds, M. K. et al. Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Glob. Change Biol. 20, 1211–1224 (2014).
Skorseth, K. & Selim, A. A. Gravel Roads: Maintenance and Design Manual.
Zheng, J., Berns-Herrboldt, E. C., Gu, B., Wullschleger, S. D. & Graham, D. E. Quantifying pH buffering capacity in acidic, organic-rich Arctic soils: Measurable proxies and implications for soil carbon degradation. Geoderma 424, 116003 (2022).
Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 1–11 (2019).
Green, R. O. et al. Airborne Visible/Infrared Imaging Spectrometer 3 (AVIRIS-3). in 1–10 (IEEE, 2022).
Euskirchen, E. S., Bret-Harte, M. S., Scott, G. J., Edgar, C. & Shaver, G. R. Seasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska. Ecosphere 3, art4 (2012).
Gay, B. A. et al. Investigating permafrost carbon dynamics in Alaska with artificial intelligence. Environ. Res. Lett. 18, 125001 (2023).
Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. 2022(3), 55–67 (2022).
Jones, M. C. et al. Past permafrost dynamics can inform future permafrost carbon-climate feedbacks. Commun. Earth Environ.Bold”>4, 1–13 (2023).
Liu, Z. et al. Widespread deepening of the active layer in northern permafrost regions from 2003 to 2020. Environ. Res. Lett. (2023).
Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).
Bring, A. et al. Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. J. Geophys. Res. G Biogeosci. 121, 621–649 (2016).
Kurylyk, B. L., Hayashi, M., Quinton, W. L., McKenzie, J. M. & Voss, C. I. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow. Water Resour. Res. 52, 1286–1305 (2016).
Feng, J. et al. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome 8, 3 (2020).
Heijmans, M. M. P. D. et al. Tundra vegetation change trajectories across permafrost environments and consequences for permafrost thaw. Nat. Rev. Earth Environ. 3 (2022).
BLM. Willow Master Development Plan Biological Assessment: Appendices (2022).
Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3 (2022).
Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: Insights from metagenomics. ISME J. 11, 2305–2318 (2017).
Adams, J. B., Smith, M. O. & Johnson, P. E. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site. J. Geophys. Res. Solid Earth 91, 8098–8112 (1986).
Gillespie, A. et al. Interpretation of residual images: Spectral mixture analysis of AVIRIS images, Owens Valley, California. In: Proceedings of Second Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop 243–270 (NASA, Pasadena, California, 1990).
Smith, M. O., Ustin, S. L., Adams, J. B. & Gillespie, A. R. Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sens. Environ. 31, 1–26 (1990).
Strahler, A. H., Woodcock, C. E. & Smith, J. A. On the nature of models in remote sensing. Remote Sens. Environ. 20, 121–139 (1986).
Small, C. The Landsat ETM+ spectral mixing space. Remote Sens. Environ. 93, 1–17 (2004).
Small, C. & Milesi, C. Multi-scale standardized spectral mixture models. Remote Sens. Environ. 136, 442–454 (2013).
Small, C. & Sousa, D. Spectral characteristics of the dynamic world land cover classification. Remote Sens. 15 (2023).
Small, C. & Sousa, D. The Sentinel 2 MSI spectral mixing space. Remote Sens. (2022).
Sousa, D. et al. The spectral mixture residual: A source of low-variance information to enhance the explainability and accuracy of surface biology and geology retrievals. J. Geophys. Res. Biogeosci. 127, e2021JG006672 (2022).
Sousa, D. & Small, C. Globally standardized MODIS spectral mixture models. Remote Sens. Lett. 10, 1018–1027 (2019).
Sousa, D. & Small, C. Multisensor analysis of spectral dimensionality and soil diversity in the great Central Valley of California. Sensors 18, 583 (2018).
Sousa, D. & Small, C. Global cross-calibration of Landsat spectral mixture models. Remote Sens. Environ. 192, 139–149 (2017).
Adams, J. B. & Gillespie, A. R. Remote Sensing of Landscapes with Spectral Images: A Physical Modeling Approach. (Cambridge University Press, 2006).
Davidson, S. J. et al. Mapping Arctic tundra vegetation communities using field spectroscopy and multispectral satellite data in North Alaska, USA. Remote Sens. 8, 978 (2016).
Liu, N., Budkewitsch, P. & Treitz, P. Examining spectral reflectance features related to Arctic percent vegetation cover: Implications for hyperspectral remote sensing of Arctic tundra. Remote Sens. Environ. 192, 58–72 (2017).
Nelson, P. R. et al. Remote sensing of tundra ecosystems using high spectral resolution reflectance: opportunities and challenges. J. Geophys. Res. Biogeosci. 127, e2021JG006697 (2022).
Thomson, E. R. et al. Multiscale mapping of plant functional groups and plant traits in the High Arctic using field spectroscopy, UAV imagery and Sentinel-2A data. Environ. Res. Lett. 16, 055006 (2021).
Vehicle turnout length Guidance, State of Alaska.pdf